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ABSTRACT 

Engineered far-from-equilibrium synthetic chemical networks that pulse or switch states in 
response to environmental signals could precisely regulate the kinetics of chemical synthesis or 
self-assembly pathways. Currently, such networks must be extensively tune to compensate for the 
different activities of and unintended reactions between a network’s different chemical elements. 
Elements with standardized performance would allow rapid construction of networks with 
designed functions. Here we develop standardized excitable chemical elements, termed genelets, 
and use them to construct complex in vitro transcriptional networks. We develop a protocol for 
identifying >15 interchangeable genelet regulatory elements with uniform performance and 
minimal crosstalk. These elements can be combined to engineer feedforward and feedback 
modules whose dynamics are predicted by a simple kinetic model. We show modules can be 
rationally integrated and reorganized into networks that produce tunable temporal pulses and act 
as multi-state switchable memories. Standardized genelet elements, and the workflow to identify 
more, should make engineering complex far-from-equilibrium chemical dynamics routine. 

INTRODUCTION 

The chemistry of life operates far from equilibrium1,2. Complex cellular processes such as 
stress response3,4 and morphogenesis5,6 are orchestrated by genetic regulatory networks (GRNs) 
6,7 that continuously require energy in order to rapidly and repeatedly change chemical dynamics 
in response to time-varying environmental stimuli. Each gene in a GRN can be considered an 
excitable unit, whereby ultrasensitivity and amplification enables a small change in a regulating 
molecule’s concentration to lead to a dramatic change in output concentration for efficient signal 
propagation8. Synthetic chemistries9–20 composed of excitable units that operate far-from-
equilibrium like GRNs could direct complex chemical dynamics1,2,21–23 and pattern formation24–26 
or chemical regulation of nanostructures27,28. Cellular GRNs typically integrate 10-100 excitable 
units to direct complex dynamics and thus a key step toward emulating GRN dynamics in synthetic 
systems is scaling up synthetic far-from-equilibrium chemistries6,7. The circuit elements10,12,19, or 
nodes, for such synthetic chemistries are typically designed for specific modules with additional 
nodes designed as needed to increase complexity14,27,29,30. However, iterative design is often 
needed to find working nodes, and repeatedly appending nodes constrains future design space. A 
library of orthogonal circuit elements with standardized performance would make it possible to 
rapidly construct modules and integrate them into larger dynamic networks (Fig. 1a). 

We sought to develop such a workflow for in vitro transcriptional circuits12,16,19,20,28,31 
composed of short transcriptional templates called genelets. Each genelet consists of an input (I) 
domain that combines a DNA activator binding site and an incomplete T7 RNA polymerase (T7 
RNAP) promoter site, and an output (O) domain that encodes an RNA transcript. A genelet’s 
output is transcribed when a DNA activator binds the genelet’s input domain (Fig. 1b). Genelets 
regulate one another by transcribing RNAs that repress or activate a target node (Fig. 1c) by 
controlling the ability of DNA activators to bind their target genelets. A regulating RNA (rR or 
rC) changes a genelet’s state when its concentration is higher than the concentration of its 
corresponding DNA regulator (dA or dB). DNA regulators are present in excess of their genelets, 
facilitating ultrasensitivity through molecular titration to produce excitable behavior akin to 
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neuronal firing32. Regulating RNAs are also degraded by RNase H, enabling signal turnover (Fig. 
1d,e). Genelets therefore emulate the powerful aspects of cellular GRNs using only short DNA 
strands and two enzymes. However, scalable genelet network engineering has been limited by 
spurious side reactions and inconsistent regulation rates across sequence domains12,30. 

Here we develop a scalable method of building genelets with standardized performance. 
We identify >15 standardized circuit elements, or regulatory domains, and show that these domains 
can be interchangeably combined into genelets that activate and/or repress one another. We 
engineer a suite of feedforward and feedback modules and demonstrate that these modules can be 
integrated into mesoscale networks that execute tunable temporal dynamics or serve as switchable 
memories. Importantly, these engineered networks behave as a general model of genelet behavior 
predicts, and both feedback and feedforward modules perform similarly within mesoscale 
networks and in isolation, indicating circuit element orthogonality. Finally, we show our workflow 
can identify additional standardized domains. Standard genelet components will enable predictive 
engineering of far-from-equilibrium chemical networks making it possible to routinely program 
complex chemical synthesis pathways, reaction-diffusion patterns, or regulation of materials. 
 
RESULTS 

A modular design for bidirectionally regulated genelets  

We first sought to create a library of standard genelet nodes that could be bidirectionally 
regulated, exhibit predictable and uniform behavior, and whose members have minimal crosstalk. 
To build this library, we first developed a standard genelet design in the form of sequence domains 
with specific lengths and complementarity (Fig. 1b). We then built a genelet library by choosing 
different, modular sequences for these domains that exhibited uniform performance. 

We began with a genelet design that sequesters most of each node’s long input domain 
within a hairpin which reduces the propensity for crosstalk between network components30. Such 
a node can be repressed by upstream transcripts: A genelet:activator complex presents a 3’ ssDNA 
toehold, and a strand displacement reaction between an RNA repressor and the complex mediated 
by this toehold (the repressor toehold, or RTH) removes the DNA activator. However, a 3’ ssDNA 
overhang can facilitate promoter independent transcription by T7 RNAP, which can cause a 
genelet to turn itself off (autoinhibition)30. To mitigate autoinhibition, we moved the ssDNA RTH 
domain to the 5’ end of the activator (Supplementary Section 2). We termed this the HPC5o node 
design (Supplementary Fig. 1).  

We next sought to modify the HPC5o design to allow upstream transcripts to not only 
repress but also activate downstream genelets. One way to create such bidirectionally regulated 
nodes would be to sequester a genelet’s DNA activator in a double-stranded DNA (dsDNA) 
complex12,16,28. An upstream RNA transcript could then release the DNA activator from this 
complex to turn a node on (Supp. Section 3.1). However, such a transcript must share sequence 
elements with the DNA activator; we found that transcripts that could release HPC5o DNA 
activators from this complex also bound to the genelets, preventing the activators from binding 
(Supp. Figure 6, Supp. Section 3.1).  
   We therefore devised a new scheme for bidirectional regulation, the HPC5 node design, in 
which a DNA blocker strand binds to the genelet to prevent or reverse DNA activator binding (Fig. 
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1b). Transcription can occur when the activator is bound, but not when the blocker is. Upstream 
signals can upregulate or downregulate genelet transcription by sequestering either the genelet’s  

 
Figure 1 | The HPC5 genelet toolbox. (a) Network engineering workflow. (b) Each genelet consists of an input (I) 
domain (G1 here), that controls transcription activity, and an output (O) domain, S1 here. The T7 RNAP promoter 
sequence (pink) of a genelet is not double-stranded, so little transcription occurs (OFF). Transcription occurs from a 
genelet:activator complex (ON) because the activator completes the promoter sequence. A DNA blocker prevents both 
transcription and DNA activator binding (BLK). Output domains that repress input domain i are labeled Ri and those 
that coactivate input domain i are labeled Ci. DNA and RNA species are depicted as solid or dashed lines and have a 
d or r prefix, respectively. Fluorophore (F) and quencher (Q) modifications are used to track genelet state. (c) Upstream 
transcripts reverse activation (repression) or blocking (coactivation). Coactivation passes through OFF to get to ON. 
(d,e) An RNA repressor turns a node OFF. The DNA blocker was omitted but it could displace the activator if free 
(d). An RNA coactivator removes the blocker to allow activator binding, which turns a node ON (e). Both repression 
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and coactivation are reversed via RNase H degradation. Reactions with free activators and blockers are shown in 
Supplementary Fig. 2.  

DNA blocker or DNA activator (Fig. 1c). An RNA repressor sequesters the DNA activator to 
downregulate expression (Fig. 1d), while an RNA coactivator sequesters the DNA blocker to 
upregulate expression through DNA activator binding (Fig. 1e). We confirmed that the DNA 
blocker prevented activator binding and DNA and RNA coactivators both facilitated genelet 
activation. We also verified that coactivation could be reversed by adding blocker or degrading the 
RNA coactivator (Supplementary Section 3.2).   
 
Creating a library of interchangeable regulatory domains with standardized behavior 

Using the HPC5 design, we sought to create a combinatorial library of modular genelet 
input and output sequences that could be interchangeably assembled into networks. We used 
NUPACK 3.2.233 to design sequences for 36 new genelet input-output sequences predicted to be 
thermodynamically stable in their designed hairpin structures and to have minimal non-designed 
secondary structure interactions with each other or the G1 HPC5 node (Supplementary Section 
4.1). We measured rates of activation of two sample sequences from this library and found they 
differed by 5-fold (Supplementary Fig. 14). This difference is consistent with previously reported 
rate constants of 4-way branch migration reactions34,35 which ranged from 103–104 M-1s-1, so 150 
nM DNA activator would be expected to activate >0.9 fraction of 25 nM genelets anywhere 
between 15-100 minutes. To obtain standardized behavior across nodes, we sought to identify 
sequences that each activated relatively fast, which we defined as reaching >0.9 fraction ON in <1 
h. We developed a screening assay to quickly and inexpensively measure the DNA activation rates 
of the remaining 34 designed sequences (Supplementary Section 4.2). Sixteen satisfied these 
screening criteria (Fig. 2b and Supplementary Fig. 15).  

We next tested the coactivation and repression kinetics of these 16 nodes. Five input 
sequence domains randomly selected from these nodes all turned on and off rapidly in response to 
their respective DNA coactivators and repressors. But two of these nodes coactivated and/or 
repressed much more slowly when their RNA coactivators or repressors were transcribed (Fig. 2c 
and Supplementary Fig. 18), which suggested the RNA might be incompletely transcribed or  
misfolded36. To eliminate nodes that exhibited slow transcriptional regulation, we developed a 
faster and quicker screening assay to measure coactivation and repression kinetics (Fig. 2c and 
Supplementary Section 4.3). We used this assay to determine that eight of 11 remaining untested 
nodes reached >0.9 fraction ON/OFF in less than an hour in response to both DNA and transcribed 
RNA regulators (Fig. 4d and Supplementary Section 4.4). Five could only be regulated quickly in 
one direction, suggesting these should be used when only that direction of regulation is required7. 
In total, this screening process therefore yielded 11 distinct node sequences that could be quickly 
coactivated, repressed, or both. 

To test whether these 11 nodes’ input and output domains (Fig. 1b) could be used 
interchangeably, we measured the activation kinetics of 28 unique input and output combinations. 
Twenty-seven of these took <1 h to switch their targets to >0.9 ON/OFF. These experiments also 
suggested that the choice of the output domain of a genelet did not generally affect the rate of 
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regulation of its input domain: nodes with the same input domain generally switched on or off in 
similar times (Supplementary Section 4.5).  
 

 

Figure 2 | Design and screening protocol for identifying sequences for standardized HPC5 genelet domains. (a) A 
library of genelet node sequences, termed HTT variants, are designed computationally (using NUPACK) by 
minimizing undesired secondary structure interactions between library sequences. (b) HTT genelet variants that reach 
>0.9 fraction ON in <1 h after addition of their DNA activator (in the absence of enzymes) are identified from the 
designed library. (c) The rates of coactivation and repression by transcribed RNA regulators of HTT variants identified 
in (b) are then measured using constitutively active transcription templates for RNA coactivators and repressors (solid 
lines). HTT genelet variants that can reach >0.9 fraction ON in <1 h are selected as node sequences. Dashed curves 
show rates of coactivation/repression in response to DNA coactivators/repressors. (d) The number of nodes that passed 
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each stage of the screening protocol. See Supplementary Section 4 for a detailed description of screening protocols. 
(e) The standardized HPC5 genelet input and output domains can be interchanged without significant changes in 
regulatory kinetics. See Supplementary Section 4.5 for individual kinetic trajectories, experimental conditions, and 
additional input and output domain combinations. 

Engineering temporal genelet expression programs 

We next investigated whether the standardized nodes we identified could be integrated into 
regulatory networks whose dynamics could be quantitatively predicted and programmed. To guide 
network design, we developed a general model of genelet dynamics consisting of the ordinary 
differential equations describing the mass action kinetics of the designed reactions involved in 
genelet regulation, transcription, and RNA degradation for the set of genelets making up a network 
(Supplementary Section 5). Because each of the library’s nodes has similar performance, the model 
assumes the kinetic rate constants are the same regardless of a node’s sequence.  

We first used the model to design modules that produce well-defined pulses in signal 
expression through coordinated genelet coactivation and repression, as in the incoherent type 1 
feedforward loop (IFFL) motif common in cellular GRNs6,7,37,38 and biochemical information 
processing39,40. In a genelet IFFL (Fig. 3a), an output node (G1) should pulse when the activator 
of the upstream G2 nodes is added.  

Simulations indicated that the relative rates and strengths of G1 coactivation and repression 
determine pulse shape and timing (Supplementary Fig. 6.1). Varying the concentrations of the 
IFFL components produced trends in pulse kinetics predicted by these simulations (Supplementary 
Fig. 29). However, we also found that the BLK G3R1 node turned on in the absence of input in 
the IFFL1, which was not predicted. In isolation, BLK G3R1 turned itself on at a rate proportional 
to the dB3 concentration, suggesting promoter-independent transcription of unbound DNA 
blockers41. We modified the single-stranded 3’ ends of the blockers to be 2’ methylated RNA42, 
which eliminated BLK G3R1 autoactivation (Supplementary Fig. 32). We also found the G8 and 
G10 nodes exhibited autoactivation, so we also changed their single-stranded 3’ ends to 2’ 
methylated RNA (Supplementary Section 7). Using methylated blockers, we were able to reliably 
tune IFFL behavior and responsiveness as predicted in simulations: when G2 nodes were activated, 
increasing the dA1 concentration increased the threshold for G1S1 repression, simultaneously 
increasing both pulse height and width, and when G2 was not activated, the network did not 
respond (Fig. 3b).   

A key feature of a library of standardized nodes is that the same module could be built from 
any set of nodes in the library. To test whether nodes could be interchanged in this way, we 
designed two additional IFFL modules using other genelet input domains from our library and 
evaluated their dynamics using the same concentrations of nodes used for IFFL1. All three 
modules (IFFL1, IFFL2, and IFFL3) exhibited similar pulse dynamics that qualitatively matched 
the predictions of the general model (Fig. 3b-d).  

We next asked whether we could connect multiple IFFL modules in a composite network, 
the IFFL1_23,7 (Fig. 3e), which the general model predicted would produce sequential pulses of 
the two IFFL modules’ outputs when triggered (Fig. 3f and Supplementary Fig. 35). To test this 
hypothesis, we initially connected the IFFL2 module to an upstream node (G3C5). This new 
connection caused the G3C5_IFFL2 network’s output to pulse even in the absence of input. We 
hypothesized this spurious pulsing was caused by leak transcription from BLK G5 genelets 
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(Supplementary Section 8.4). Incorporating a leak transcription from BLK G5 nodes of 5% the 
rate of ON G5 nodes in the general model recapitulated the G3C5_IFFL2’s spontaneous activation. 
This revised model predicted that increasing the concentrations of the DNA blockers in the IFFL2 
module should prevent spontaneous activation (Supplementary Fig. 36). We also identified  

 

Figure 3 | Incoherent feedforward loops (IFFL) orchestrate temporal pulses in genelet activation. (a) The IFFL1 
network. Here and elsewhere, a yellow star on a node indicates that the node was fluorescently modified to track its 
activation levels during experiments. (b) Normalized activation levels of IFFL1 nodes predicted by the general genelet 
model (left) and in experiments (right) for networks with 125, 250, or 500 nM dA1. Dashed lines in plots show 
activation levels when dA2 was not added. The general genelet model is described Supplementary Section 5. (c-d) 
Two IFFL modules assembled from different nodes (above plots). Normalized activation levels of network nodes with 
125, 250, or 500 nM of the pulsing node’s activator. Dashed lines in plots show activation levels when dA5 (c) and 
dA9 (d) were not added. (e) The IFFL1_2 network, consisting of the IFFL1 and IFFL2 modules connected in series. 
(f) Normalized IFFL1_2 node activation levels predicted by the general genelet model (left) and from experiments 
(right). (g) Normalized activation levels of IFFL1_2 network nodes with different concentrations of G3C5. Detailed 
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methods are in Supplementary Sections 6.2 and 8.2. IFFL1, IFFL2, IFFL3, and IFFL1_2 design notes and sequences 
are in Supplementary Sections 6.3, 6.5, 6.6, and 8.1. 

  

 
 
undesired hybridization between rR1 and rR4 that altered the IFFL1 pulse dynamics in the 
IFFL1_2; changing a single base in rR4 removed this interaction (Supplementary Fig. 39), so that 
after this change, the IFFL1_2 produced two sequential pulses similar to those predicted by the 
general model (Fig. 3f). This rR4 sequence variant was used in all subsequent networks. Using the 
general model as a guide (Supplementary Fig. 37), we found we could delay the IFFL2’s pulse 
relative to the IFFL1 pulse in the IFFL1_2 by decreasing the concentration of the G3C5 node that 
connects the IFFL modules together or increasing the dB5 concentration (Fig. 3g and 
Supplementary Fig. 40).  
 
Engineering multi-stability in mutually repressive networks 

We next sought to determine whether we could use standard genelet nodes to design 
feedback networks with predictable behavior. As a test, we chose to construct multi-stable memory 
networks where transient signals induce sustained changes in signal expression until new signals 
are introduced3,4,7,43. Such networks employ a mutually repressive feedback architecture in which 
all nodes repress one another6,7 and multi-stability requires the feedback strengths between nodes 
to be fairly uniform, as unbalanced feedback strengths between two nodes in a mutually repressive 
network can lead to mono-stability (Supplementary Fig. 44). Increasing the number of states, and 
therefore the number of nodes in a mutually repressive architecture exacerbates the possibility of 
creating a network with less than the desired number of stable states (Supplementary Figs. 44 and 
45) from variation in reaction rates or crosstalk between components. Switchable mutually 
repressive bi-stable modules have been developed and characterized for a number of synthetic 
GRN analogs14,19,44, including genelets19,30. We sought to test whether standardized genelets could 
facilitate straightforward engineering of switchable networks with more than two states.  

We began by designing a tri-stable network (TSN) composed of three interlocked mutually 
repressive bi-stable modules (BSM1-3) (Fig. 1a and Supplementary Section 9.1). Kinetic 
simulations using the general genelet model predicted that for suitable component concentrations 
and the rate constants assumed in our general model, this network would maintain each of three 
stable states indefinitely after being initialized in them (Supplementary Figs. 46-48). Consistent 
with these predictions, the designed network maintained each initial state for over 8 hours in 
experiments (Fig. 4b). 

Simulations suggested that inducer RNAs30 that bind to and inactivate specific RNA 
repressors could switch the network’s state by turning a repressed node ON, which would 
subsequently shut off the nodes that were active in the original state (Supplementary Figs. 49-50 
and Fig. 4c). We asked whether an inducer RNA design developed for KWW genelets30 that relies 
on partial hybridization of the inducer to its target RNA repressor could be adopted to create a 
standard inducer RNA design for HPC5o genelets (Supplementary Figure 42). Indeed, standard 
inducer designs complementary to 16 bases of their target repressors could induce all six possible 
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single state changes in the TSN (Fig. 4d) and could induce two (Fig. 4e) and three (Supplementary 
Figs. 52) state changes when added in sequence.  
 

 

Figure 4 | A tri-stable network (TSN) composed of three mutually repressive bi-stable modules (BSMs). (a) The TSN 
architecture. G1D, G3D, and G4D are reporting nodes that monitor network state. As all TSN interactions are 
repressive, DNA blockers were omitted and HPC5o genelets (denoted with *), which lack blocking toeholds (BTH in 
Fig. 1c), were used. (b) Normalized activation levels of reporting nodes after TSN initialization in each of its three 
stable states. (c) Schematic of the 6 possible TSN single state changes and how they can be triggered by inducer RNAs 
that inhibit specific RNA repressors. rI1, rI3, and rI4 direct switches to States 1, 2, and 3, respectively. (d) Normalized 
activation levels of reporting nodes during each possible state change. Inducer RNAs were added after 1 h in the initial 
state (green arrows) to final concentrations of 10 µM. Switching into State 2 occurs faster than predicted in 
simulations, possibly due to a high rR3 degradation rate or rI3 actively removing rR3 from dA3. (e) Normalized 
activation levels of reporting nodes during sequential state changes. Inducer RNA concentrations are in Supplementary 
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Section 9.2. TSN network design notes and sequences are in Supplementary Section 9.1. Experimental methods are 
in Supplementary Section 9.2.  

 

Scalable network engineering through module integration 

We next asked whether we could integrate feedforward and feedback modules into larger 
composite networks whose dynamics could be predicted by the behaviors of their component 
modules. We first designed a network in which the two possible outputs of a bi-stable module 
(BSM4) triggered two different temporal pulses3,4 (Fig. 5a) produced by one of two different IFFL 
modules (Fig. 5b), termed the bi-stable incoherent IFFL1 OR 2 (BS_IFFL1|2) network. When 
initialized in each of its two states, the BS_IFFL1|2 network triggered the respective IFFL, 
producing output pulses similar to those produced by the IFFL modules in isolation (Fig. 5c and 
Fig. 3). The BS_IFFL1|2 network’s state could be switched by standard inducer RNAs, and 
switching dynamics were similar to those of the BSM4 in isolation (Supplementary Fig. 54). These 
state changes triggered the designed IFFL modules (Fig. 5d).  

We next sought to integrate the BS_IFFL1|2 into even larger networks by adding both 
upstream and downstream connections. The IFFL pulses might transiently trigger other 
downstream processes, whereas activation of upstream nodes might induce changes in BSM4 state. 
Thus, to demonstrate both upstream and downstream integration of the BS_IFFL1|2 network, we 
programmed the pulse of IFFL1 to trigger a state change in the BSM4 (Fig. 5e). We first added an 
induction module30 (IM) composed of two nodes whose respective outputs are the two inducer 
RNAs that change the network’s state. Transient activation of each IM node triggered the designed 
state change (Supplementary Fig. 55). We then introduced a second output node (G1C9) into 
IFFL1 that, by producing an input to the IM, triggers the network to switch from State 1 to State 2 
(Fig. 5f). We termed this network the induction BS_IFFL1|2 with IFFL1 feedback 
(I_BS_IFFL1|2_FB1). Using simulations, we identified concentrations of G1C9 and the IM nodes 
predicted to cause I_BS_IFFL1|2_FB1 initialized in State 1 to transiently activate G9I8, thus 
inducing a switch into State 2 as designed (Supplementary Fig. 56). In experiments, the network 
orchestrated the designed dynamics (Fig. 5g), and the timing of the autonomous switch out of State 
1 almost perfectly matched the timing predicted by the general model. The time at which each 
IFFL’s output pulse reached its maximum height deviated from the times predicted by the 
simulation by less than 40 minutes (Supplementary Fig. 57). We also were able to tune the time 
spent in State 1 by changing the concentration of G1C9, as predicted by the general genelet model 
(Supplementary Fig. 58).  

The I_BS_IFFL1|2_FB1 network used 10 of the 11 standardized nodes identified during 
screening and exhibited dynamics closely mirroring those predicted by the general genelet model, 
providing compelling evidence for the orthogonality of these standardized nodes. Finally, to ask 
whether more orthogonal domains might be added to the standard node library, we followed the 
screening workflow presented in Figure 2 to identify six additional standardized domains 
(Supplementary 11.1). We used three of these domains to construct another IFFL module whose 
pulse dynamics were similar to IFFL1, 2, and 3 (Supplementary Section 11.2).  
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Figure 5 | Engineering mesoscale networks by integrating modules and programming additional interactions. (a) 
Schematic of a network in which different pulses are triggered after the network enters each of two stable states. (b) 
The BS_IFFL1|2 network, which implements the circuit in (a), consists of a bi-stable module (BSM4) coupled to two 
feedforward loops (IFFL1 or IFFL2). *s denote HPC5o genelet nodes, which lack blockers and BTH domains 
(Supplementary Section 1.1). (c,d) Normalized activation levels of BS_IFFL1|2 network reporting nodes after 
initialization of the network in its two stable states (c) and when there are state changes (d). Inducer RNAs were added 
(green arrows) to a final concentration of 10 µM. The activation of G1S1 in State 2 may be due to G7 nodes not 
staying fully repressed (c). (e) The I_BS_IFFL1|2_FB1 network. The IFFL1 feeds back to an induction module (IM) 
to trigger a change to State 2. (f) Desired I_BS_IFFL1|2_FB1 behavior. (g) Normalized activation levels of 
I_BS_IFFL1|2_FB1 reporting nodes predicted by the general genelet model (left) and measured in experiments (right) 
after the network is initialized in State 1. BS_IFFL1|2 and I_BS_IFFL1|2_FB1 design notes and sequences are in 
Supplementary Sections 10.1 and 10.2, respectively. Experimental methods are in Supplementary Section 10.3. 
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DISCUSSION 
Integration and recombination of parts with standard performance makes it possible to 

engineer powerful and dynamic behavior in a variety of physical systems. For example, computers 
are composed of integrated electrical circuits assembled from such parts. Here we create 
standardized parts for building dynamic biochemical networks by selectively screening for 
sequences with similar regulatory behavior and by designing against undesired interactions 
between components (crosstalk, autoinhibition, and autoactivation). Circuits could be assembled 
both by reorganizing the genelet nodes/modules tested here and by recombining the input and 
output domains to create new nodes. We expect that new nodes would behave reliably, as each of 
the 42 input/output combinations we tested had similar kinetics (Supplementary Section 12). 
Genelet module dynamics were fairly independent of the choice of nodes used to build the 
modules: we successfully constructed four unique incoherent feedforward loop (IFFL) modules 
and four unique bistable switch modules (BSMs). Genelet modules could readily be integrated and 
recombined into mesoscale networks that rival smaller viral GRNs in complexity and function45. 
The I_BS_IFFL1|2_FB1 network integrated four functional modules and was composed of 10 
orthogonal input domains and 15 total nodes. This network represents a significant increase in 
complexity compared to similar in vitro circuits that have been developed14,28–30; it uses 5-fold 
more nodes than any genelet network without the HPC design. 

The dynamics of the networks constructed from our standardized nodes were well 
predicted by a general model of genelet behavior. To facilitate future model-driven network design 
we developed a Python package for rapid simulation of networks with different topologies, initial 
conditions, and species concentrations that automatically generates the appropriate standardized 
genelet sequences for a given topology46. 

The standardized engineering toolbox we present could significantly expand the frontier of 
autonomous chemical systems. For example, sequential IFFL modules could be used to orchestrate 
hierarchical chemical synthesis47 and the I_BS_IFFL1|2_FB1 could select or switch between 
multiple synthesis pathways in response to environmental cues, emulating the responsive chemical 
regulation of cellular metabolism. Further, genelet networks that rival the complexity of smaller 
viral genomes could be compartmentalized to create artificial cells48. Such protocells could 
autonomously process and transmit chemical information to organize, maintain, or transform 
chemical reaction-diffusion patterns24,26. The engineering pipeline and standardized circuit 
elements presented here should make building such complex chemical systems reliable and 
routine. 

 
METHODS 
Oligonucleotides, enzymes, and other reagents 

DNA and RNA sequences for all networks and network elements are listed in the Supplementary 
Information. All oligonucleotides were purchased from Integrated DNA Technologies, Inc 
(IDT). Most genelet DNA strands used in the final networks were HPLC purified by IDT, unless 
otherwise stated in the Supplementary Information. Synthetic RNA oligonucleotides were 
ordered from IDT unpurified. Ribonucleotide triphosphates (NTPs) were purchased 
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from ThermoFisher Scientific. T7 RNAP was purchased in bulk (300,000 
units) from Cellscript (270 U/µL, C-T7300K). Yeast inorganic pyrophosphatase (YIPP) was 
purchased from New England Biolabs (NEB) (0.1 U/µL). RNase H was purchased 
from ThermoFisher Scientific (5 U/µL). Bovine Serum Albumin (BSA) was purchased from 
Sigma Aldrich (Cat# A3858). All genelets were annealed (held at 90oC for 5 minutes and then 
cooled to 20oC at 1oC/min) in NEB RNAPol reaction buffer (Cat# M0251S) with non-template 
and template strands at equimolar concentrations. For initially blocked genelets, the DNA 
blocker strand was present at 1.5x the concentration of the non-template strand. Supplementary 
Section 1 presents the 11 standardized input and output genelet sequences and describes the 
method for assembling new network connections using these domains. 

Reaction conditions and data acquisition 

Unless otherwise stated, network reactions were conducted at 37oC in NEB RNAPol reaction 
buffer supplemented with MgCl2 (final concentration 30 mM), NTPs (ATP, UTP, CTP, GTP - 
final concentration 7.5 mM each), and BSA (final concentration 0.1 mg/ml). BSA was included 
in the transcription mix to prevent the other enzymes from sticking to the walls of the reaction 
tubes. In addition to T7 RNA polymerase and RNase H, yeast inorganic 
pyrophosphatase (YIPP) was also included in reactions (1.35x10-3 U/μL) to extend the duration 
of the transcription reactions49. Nearly all of the experiments in this study were conducted with 
T7 RNAP from a single bulk batch of T7 RNA polymerase purchased from Cellscript to 
minimize the need for recalibration due to batch-to-batch variation in enzyme activity12,19,28. The 
bulk batch of T7 RNA polymerase was split into smaller aliquots (each aliquot was enough for 
20 – 30 experiments) to minimize enzyme degradation from repeated removal from the 
freezer. Concentrations of the DNA components and enzymes used are tabulated in the 
experimental methods sections for each network in the Supplementary Information. All kinetic 
data was obtained in a quantitative PCR machine (Agilent Mx3005P) equipped with the standard 
filters: FAM/SYBR Green I (492nm-516nm), HEX/JOE/VIC (535nm-555nm), Cy3 (545nm-
568nm), ROX/Texas Red (585nm-610nm), Cy5 (635nm-665nm). TYE665 and Cy5 were tracked 
with the Cy5 filter, HEX with the HEX filter, TEX615 with the ROX filter, and FAM with the 
FAM filter. Fluorescence measurements were taken every minute during the reactions. 
See Supplementary Section 13 for details on fluorescence data normalization procedures for all 
the different network experiments.  
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