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DNA computation improves diagnostic 
workflows
A molecular reaction network translated from a computer-trained classifier can distinguish lung cancer patients 
from healthy individuals based on specific microRNAs in the blood.

Pepijn G. Moerman and Rebecca Schulman

DNA is more than just a carrier of 
genetic information; it can also 
be used as a building block for 

molecular computers. In a molecular 
AND circuit, for example, the logic gate 
can consist of a partially hybridized 
DNA complex, made of an output strand 
sequestered by two sacrificial strands1. The 
inputs are single-stranded DNA oligomers 
with specific sequences, complementary 
to the sacrificial strands. Only when both 
inputs are present, they can bind to the 
sacrificial strands to release the output 
strand from the complex; if one input is 
missing, the reaction cannot proceed. 
Related principles have also been used to 
realize circuits that perform other logic 
operations and even cascades that perform 
mathematical operations2 or that can classify 
complex input mixtures3.

Computations performed by DNA 
molecules are not nearly as fast, robust 
or reproducible as those conducted by 
electronic chips. Therefore, our laptops will 
not be replaced by vials of DNA; however, 
DNA computers have the advantage that 
they can be easily interfaced with cells and 
body fluids, which makes them promising 
diagnostic tools. Computer chips manipulate 
electric pulses; by contrast, molecular 
computations act on small strands of DNA 
or RNA. Often these DNA molecules are 
lab-made strands with artificial sequences, 
but they could be viral DNA or microRNA 
(miRNA) molecules — small RNAs that 
regulate cellular gene expression.

In 2004, Benenson et al. demonstrated a 
molecular computation that could recognize 
specific RNA molecules in vitro and 
subsequently produce a DNA signal4. The 
authors suggested that such a nanoscopic 
DNA computer could recognize viral RNA 
and produce miRNA that activates cellular 
defence pathways, which would make DNA 
computations promising tools for at-home 
or point-of-care diagnosis.

Such autonomous diagnostic tools may 
seem futuristic; however, viral infections 

can already be diagnosed using DNA 
circuit-based kits; for example, implemented 
in a paper-based kit for the diagnosis of 
a Zika virus infection in blood serum5. 
First, RNA from the serum is amplified 
increasing picomolar RNA concentrations to 
nanomolar levels, which gives enough signal 
to be measured, followed by an enzymatic 
reaction leading to a colour change of the 
paper when Zika virus RNA is present. This 
workflow can be applied for viral infections 
that are readily recognized by the presence 
of one foreign RNA molecule — that of 
the virus— but most disease diagnoses 

require the recognition of a pattern of 
many miRNAs, whose concentrations are 
often only slightly increased or decreased 
compared to healthy individuals. For 
example, to diagnose cancer, relative 
concentrations of multiple miRNAs must 
be measured for reliable diagnosis. This is 
where DNA computations come in; Lopez 
et al. showed that a DNA classifier can pick 
out RNA concentration patterns indicative 
of cancer from a slew of miRNAs that mimic 
those that would be present a blood sample6. 
An output DNA signal is only produced 
when miRNAs were present in a particular 
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Fig. 1 | Diagnostic workflow for lung cancer diagnosis. The workflow includes purification of RNA from 
blood serum, amplification of RNA, DNA computation and reporting. The DNA computation takes 
the concentration of 4 miRNAs as an input, multiplies them with their respective weights, adds them, 
and subtracts the ones that signal good news from the ones that signal bad news. A computer-based 
classifier was used to select the optimal set of 4 miRNAs and their weights. Three-dimensional graph 
(bottom left) reproduced with permission from ref. 7, Springer Nature Ltd.
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ratio that is uncommon in healthy cells but 
typical in cancer cells.

Now, writing in Nature Nanotechnology, 
Chao Zhang et al. have — for the first 
time — integrated a DNA classifier that 
recognizes biological miRNA patterns 
into a complete diagnostic workflow7. The 
researchers were able to diagnose non-small 
cell lung cancer based on four miRNAs 
present at picomolar concentrations in blood 
serum. The procedure takes approximately 6 
hours and is 86.4% accurate.

The authors first identified a set of 
miRNAs that could act as a fingerprint 
for the recognition of lung cancer. Next, 
they used publicly available clinical data 
on the concentrations of these miRNAs in 
healthy individuals and lung cancer patients 
to train a computer-based classifier that 
distinguishes between the two groups. The 
training process identified an optimal set of 
four miRNA markers for lung cancer and the 
relative importance of each miRNA, which 
was captured in a weight, W. Two miRNAs 
have positive differential expression in lung 
cancer patients compared to healthy patients; 
they signal an increased likelihood of cancer. 
And two miRNAs have negative differential 
expression and thus, high concentrations 
suggest a patient is healthy.

The researchers then translated the 
computer-trained classifier into a DNA 
computation that takes the concentrations 
of the four selected miRNAs as input. 
The molecular classifier consists of two 
consecutive computations; first, each input 

signal i is multiplied by a weight Wi in a 
process, in which the miRNA molecules 
interact with a DNA complex such that Wi 
DNA strands are released for each RNA 
strand that comes in. The two signals 
indicating cancer are then subtracted from 
the two signals indicating health. Pairs of 
good-news and bad-news DNA strands 
annihilate and form a waste product; 
whichever strand is in excess reacts with 
a fluorescent marker and a signal can be 
observed (Fig. 1).

These computations require miRNA 
concentrations three orders of magnitude 
higher than physiological levels; thus, 
miRNA levels in blood serum first need 
to be amplified, which poses a problem, 
because classification based on relative 
miRNA concentrations only works if ratios 
are preserved. RNA amplification is typically 
done using polymerase chain reaction 
(PCR), which exponentially increases the 
concentration of each RNA molecule and 
distorts their ratios. To resolve this issue, 
Zhang et al. trained their classifier to act 
on the logarithm of the RNA concentration 
rather than on the actual value. Thereby, 
the weights in the classifier correct for the 
inherent bias of the amplification step.

Integration of DNA computation into 
diagnostic tools expedites the interpretation 
of miRNA levels in blood; however, such 
tools require specialized equipment and 
a trained user for sample preparation, 
RNA amplification and signal readout. 
Optimization of other steps in the diagnostic 

pathway could reduce this problem. For 
example, the produced signal could be 
a colour change, which is observable by 
the naked eye. Moreover, a computation 
process could not only produce a yes-or-no 
answer, but could distinguish between 
different types of cancer, producing signals 
in different colours. Diagnostic kits may 
eventually even integrate automated 
RNA purification and amplification. The 
proof-of-concept diagnostic workflow 
reported by Zhang et al. is an important 
step toward developing such point-of-care 
kits, combining all necessary components 
— computing, amplification, reporting and 
machine learning — into a single diagnostic 
pathway and demonstrating that they can be 
interfaced with each other. ❐
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