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Design, System, Application

The DNA nanotubes described in our paper are molecularly designed to self-assemble from
monomeric DNA tiles and to undergo polymer end-to-end joining processes. The nucleation
and growth of our DNA nanotubes is controlled via DNA origami seeds that can be attached to
various landmarks. Their primary functionality is to connect molecular landmarks, be they on a
single solid surface, two parallel surfaces, or on two separate particles. The important design
constraints to consider are (a) the persistence length of the nanotubes, (b) the average length
of the nanotubes, (c) the rate of end-to-end joining of the nanotubes, (d) the concentration of
monomeric DNA tiles that form the nanotubes, (e) the concentration of the DNA origami seeds
that nucleate the nanotubes. In the future, we hope that our nanotubes may be used to
synthetically reproduce the functionality of the cellular cytoskeleton by forming designable
networks that can be controllably reconfigured.



Molecular Systems Design & Engineering Page 2 of 13

Characterizing the Length-Dependence of DNA Nanotube End-to-
End Joining Rates
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www.rsc.org/ hierarchical assembly processes. While predictive kinetic models are being developed for the assembly of DNA
nanostructures from small monomeric components, a general model for the hierarchical assembly of DNA nanostrutures
remains elusive. DNA tile nanotubes provide an ideal model system for the study of hierarchical assembly via end-to-end
joining. In this study, we experimentally characterize the length-dependence of the end-to-end joining rate of DNA tile
nanotubes. We then test the ability of three different models of polymer end-to-end joining to reproduce experimentally
measured changes in nanotube lengths during a joining reaction using an ODE model for nanotube joining. All three models
predict physically realistic joining rates that are consistent with prior measurements, with a length-independent end-to-end
joining rate model providing the best fit to the experimental data. A length-independent constant joining rate is consistent
with other DNA self-assembly processes across a broad range of length scales and also suggests how tractable models for
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hierarchical DNA nanostructure could be developed. .

Introduction

A longstanding goal of nanotechnology is the development
of methods for synthesizing custom matter from the ground up
in a hierarchical fashion. As described by Drexler,1 an ‘atomic
assembler’ is a device that can build materials atom-by-atom to
yield any specified design pattern. DNA nanotechnology offers
a route towards the synthesis of custom nano-structured
materials and circuits through controlled self-assembly
processes,z'4 although of DNA oligonucleotides rather than
atoms. Self-assembly in particular offers not only the ability to
inexpensively assemble structures with very small features, but
also the ability to create materials that are capable of
autonomous reconfiguration in response to stimuli.>”®

An essential challenge is the self-assembly of designed
structures with feature sizes ranging from nanometers to tens
of microns or beyond.m'17 At very large size scales, hierarchical
self-assembly, which allows molecules to assemble to form a
desired structure in parallel, is likely to be important for
efficient self-assembly. An understanding of the kinetics of
hierarchical self-assembly processes and the development of
models and design tools will therefore enable the development
of reliable fabrication processes for complex structures and
custom materials.”®*?*  One challenge in hierarchical self-
assembly is that interactions may occur between objects of very
different sizes. Because structure size affects diffusion rates
and the ability of reactants to properly orient, understanding
how structure size affect rates of binding will be crucial for the
accurate determination of assembly reaction rates. In this
work, we investigate the kinetics of micron-scale DNA
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nanostructure assembly using a model system: we characterize
the length-dependence of DNA tile nanotube joining rates. We
experimentally measure changes in the distribution of
nanotube lengths due to end-to-end joining and test the ability
of three models of end-to-end joining rates (two length-
dependent, one length-independent) to reproduce the
experimental length data.

DNA nanostructures exploit programmable Watson-Crick
base pairing interactions between DNA molecules to achieve a
specific final shape. In the folding of scaffolded DNA origami®
for example, a single ~7,000 base ‘scaffold’ strand is used as a
template to organize hundreds of shorter ‘staple’ strands. The
staple strands hybridize with multiple regions of the scaffold
strand, generally at points separated by hundreds or more
bases. This assembly process forces the template into a
compact folded structure that for typical scaffold lengths is tens
of nanometers in size.”” ?* The driving force for origami folding
is hybridization of complementary regions of single stranded
DNA.> In addition to folded DNA origami, smaller
nanostructures such as DNA tiles”™ ***° can also be assembled
via base pair complementarity. These tiles as well as DNA
origami structures can each self-assemble into hierarchical
structures such as 2-D and 3-D lattices that may grow to the
micrometer scale.”’ At this scale, a combination of DNA
hybridization, shape complementarity between DNA origamis
as well as blunt end helix stacking is used to drive assembly.20
Further assembly to form structures with even larger sizes may
require further steps of hierarchical assembly.28

While predictive kinetic models exist for the assembly of
some DNA nanostructures (e.g. DNA nanotubes) from small
monomeric components (e.g. DNA tiles),29 a general model for
the hierarchical assembly of DNA nanostructure assemblies
from larger components (e.g. long DNA nanotubes from short
DNA nanotubes) remains elusive.”® ® 3% syuch a model could
enable the programming of more rapid, higher yield hierarchical
self-assembly or material reconfiguration processes.

DNA nanotubes and other one-dimensional self-assembling
filaments are good models for the understanding of general
principles of self-assembly. DNA nanotubes have been
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Figure 1. Overview of DNA nanotube growth and end-to-end joining. (A) DNA origami
seeds and DNA nanotubes composed of DNA tiles. (B) seeded growth of DNA
nanotubes. (C) End-to-end joining of two unseeded nanotubes. (D) End-to-end joining
of seeded nanotubes.

Will short tubes join first? O is there no preference?

assembled using a range of structural motifs. In this paper, we
study the joining rates of DAE-E tile DNA nanotubes, linear
polymers composed of monomeric DNA crossover tiles that
assemble into cylindrical tubes as a result of single-stranded
“sticky end” hybridization between adjacent tiles.> (Figure 1).
The structure, stiffness, growth, nucleation and diffusion rates
of these nanotubes have been studied previously under a range
of conditions.™® ? 333 These structures have a persistence
length of 8.7+/-.5 uM, making nanotubes of lengths of 1-20 uM
semiflexible. Their rotational and translational diffusion in
standard buffers follows classic scaling laws for polymer
diffusion.™

DNA nanotube joining represents a special case of the
broader problem of polymer joining. The simplest case of the
polymer joining problem is the end-to-end association of two
freely mobile rigid rods in solution. A theoretical analysis by
Hill**, based on diffusional arguments presented by Riseman
and Kirkwood,* suggests that the bimolecular association rate
constant f for two rigid rods of lengths N; and N, diffusing
freely in solution should follow the form

Equation 1
Bn,N, ~ Anin(NzInNy + NyInN,)/N{N,N

where Ay, is a length-independent prefactor and N = N; +
N,. Under this form, the joining rate is symmetric about Ny =
N, and reaches a minimum value at N; = N, for a fixed total
length of the reactants N = N; + N,.

Another theoretical treatment of the
association of two freely mobile rigid rods is provided by Hariadi
et al.* Similar to Hill, the authors invoke the same arguments
from Riseman and Kirkwood® to derive length-dependent
translational diffusion constants for each rod. However, while

end-to-end

Hill enforces the condition that the two rods must be
approximately aligned in order to successfully join, Hariadi et al.
assume that the reactive ends of the rods can initiate successful
joining regardless of their orientation. The resulting expression
for the bimolecular association rate constant S for two rigid
rods of lengths N; and N, diffusing freely in solution is
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Equation 2

~A kK(NyInN; + N{InN,) /NN jrticle Online
Bin, ~ Anariaai (N2 InNy + Ny InN) [N 0ice o

where Apariaqai 1S @ length-independent prefactor and k is an
effectiveness parameter that determines the probability that a
joining event occurs each time the rod ends meet.

Experimental studies of rigid rod end-to-end joining have
focused mainly on microtubules,36 i amyloid fibrils,‘m'42 and
actin filaments.”> ** In studies by Williams and Rone,38' 3
was used to stabilize microtubules so that the end-to-end
joining rate could be measured independently of tubulin
subunit exchange. The authors observed that the association
rate decreases with increasing microtubule length, in
agreement with Hill’s model. However, they observed less than
second order kinetics, implying that molecular crowding plays a
role at higher microtubule concentrations. Bachand et al.*® and
Greene et al.’” used fluorescence microscopy to measure the
rate of assembly of microtubule nano-arrays from sheared
microtubule filaments. The use of fluorescent labels allowed the
authors to track microtubules that had undergone end-to-end
joining and distinguish them from microtubules that had not
undergone joining, yielding results that show diffusion-limited
second order kinetics in agreement with Hill's model. Using a
synthetic -amyloid peptide, Tomski and Murphy42 observed
diffusion limited aggregation also in agreement with Hill’s
model. Annealing sheared actin tropomyosin filaments,
Teubner and Wegner43 also observed a length-dependent end-
to-end joining rate in agreement with Hill.

Because the sticky ends on one side of the tile are
complementary to the sticky ends on the opposite side, DNA
nanotubes, like microtubules, have an inherent directionality.
The persistence length of DNA nanotubes (~10 um) is roughly
three orders of magnitude less than the persistence length of a
microtubule (~¥5000 um), casting doubt on the validity of the
rigid rod model for nanotube end-to-end joining on a scale of
tens of microns.

taxol

A range of previous studies support end-to-end joining as a
major factor in the assembly of DAE-E tile nanotubes and
related structures under a range of assembly conditions. Ekani-
Nkodo et al.** observed nanotube end-to-end joining directly
using optical microscopy with fluorescently labelled DAE-E DNA
tiles and determined that under the high supersaturation
conditions considered, end-to-end joining, not Ostwald
ripening, was responsible for the decrease in the number of
observed nanotubes over time. Mohammed et al.”® studied the
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end-to-end joining of DNA nanotubes nucleated from DNA
origami seeds. Utilizing optical microscopy and fluorescent
labelling of both the origami seed and the DNA nanotubes,
Mohammed et al. were able to measure nanotube joining rates
and compare the results against a coarse-grained worm-like
chain model of nanotube dynamics and joining. Hariadi et al*
used a model of DNA nanotube fragmentation (and subsequent
joining) to study the strength of fluid flows within bursting
bubbles.

These previous observations of DNA nanotube joining did
not investigate the length-dependence of the joining rate. In the
kinetic models developed for these systems, the nanotube
joining rate is either length-independent, or (in the Hariadi et
al. study) assumes a specific length-dependence that is never
independently validated. The goal of our work is to
experimentally characterize the length dependence of DNA
nanotube joining rates and assess the accuracy of current
models of nanotube joining.

We measure the joining rate of DNA nanotubes by
separately growing two populations of seeded nanotubes (each
with a unique fluorescent label). Once polymerization and
depolymerisation have reached an equilibrium (nanotubes stop
growing), we mix the populations and periodically place a
sample of the mixed populations on a glass slide to look at the
structure of the nanotubes within the mixture. We use
fluorescence microscopy to determine the extent of joining and
the lengths of the joined tubes at different time points (Figure
2). We use the length distributions of both joined and unjoined
nanotubes at each time point to determine if there is a length
dependence on the joining rate.

Two types of seeds, denoted “A” and “B”, are employed in
this study (see Mohammed et al.” for details regarding seed
design and structure). The two seeds respectively nucleate
growth in each of the two possible directions. The direction of
growth off of a seed is controlled by the sequence of adapter
strands that present sticky end sequences for tile binding.
Because the sticky ends exposed at the two types of nanotube
ends are complementary, nanotubes may end-to-end join with
one another via Watson-Crick base pairing. However,
nanotubes seeded from A seeds cannot join to one another
because they all present the same type of ends. Likewise,
nanotubes seeded from B seeds cannot join to other B-seeded
nanotubes. Henceforth, we will use the labels “A” and “B” to
distinguish these two populations of seeds and seeded
nanotubes. Additionally, we will use the label “C” to refer to
nanotubes that have end-to-end joined and contain both an A
and a B seed.

We first grew A and B seeded nanotubes in separate
solutions and waited ~15 hours until nanotube growth had
stagnated, as indicated by mean nanotube length reaching a
plateau. At this point both A and B solutions contained seeded
nanotubes with a distribution of lengths. We then mixed the A
and B solutions together in a 1:5 ratio. Including the B speciesin
5-fold excess to the A species means that the distribution of
lengths of B seeded nanotubes should not be affected
significantly by the end-to-end joining process, allowing us to
measure joining by looking at changes in the lengths of the A
seeded nanotubes over time. Distinct fluorescent labels for

Nanotube Joining Experiment
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Figure 2. Overview of experimental protocol used to observe nanotube end-to-end
joining.

both A and B seeds and tubes (see Methods) allowed us to
independently track the length distributions of A and B seeded
nanotubes using fluorescence microscopy as well as to identify
nanotubes that have undergone end-to-end joining (C
nanotubes) and measure both their total lengths and the
lengths of both the A and B components of the joined tube. By
comparing the distributions of nanotube lengths during these
experiments to the distributions of lengths predicted by
different joining models we could determine which models of
joining are consistent with DNA nanotube joining in
experiments.

Methods
Nanotube Joining Experiments

DNA Nanotube and Seed Assembly Mixtures. We grew seeded
DNA nanotubes following the protocol outlined by
Mohammed.*® Tile, adapter, and seed strand sequences used
in this study are listed in Supporting Information. DNA tile,
adapter, and staple strands were synthesized by Integrated
DNA Technologies, Inc. Adapter and tile strands were PAGE
purified. “A” seeds were labelled using 50% atto488 fluorescent
dye and 50% atto647 fluorescent dye allowing fluorescence
imaging of the seed. To distinguish “B” seeds from “A” seeds,
“B” seeds were labelled using 100% atto488 fluorescent dye.
DNA nanotubes nucleated from “A” seeds were labelled with
cy3 dye and nanotubes nucleated from “B” seeds were labelled
with atto647. All samples were prepared in TAE buffer (40 mM
tris-Acetate, 1ImM EDTA) to which 12.5 mM magnesium acetate
was added. In the initial A solution, the strands for each tile
were present at 55 nM except for the strands presenting sticky
ends, which were present at 110 nM to minimize the
concentration of malformed tiles. In the initial B solution, the

Page 4 of 13
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strands for each tile were present at 175 nM (sticky end strands
at 350 nM.) Both A and B DNA origami seeds were prepared as
described in Agrawal et al.,”® with the only differences between
A and B seeds being the sequences of the adapter strands and
the identities of the fluorophore used to label them.

Nanotube Annealing. Samples were annealed using an
Eppendorf Mastercycler in a two-pot reaction. In one pot, DNA
tiles were annealed from 90 °C to 20 °C at 1 °C/min. In a second
pot, DNA origami seeds were annealed using the protocol
described by Agrawal et al. After annealing, the seeds were
purified using centrifugal filtration to remove excess staples and
adapters not incorporated into seeds (as described in Agrawal
et al.45) Purified seeds were then added to the annealed tiles at
a concentration of approximately 6 pM and incubated at 20 °C
for 15 hours. “A” solution and “B” solution samples were
prepared separately during this process. After separately
incubating the A and B solutions for 15 hours, the solutions
were combined in a 1:5 A:B ratio and incubation was continued
at 20 °C.

Fluorescence Microscopy. After combining the A and B
solutions, fluorescence microscopy images were taken at 0.5 hr,
2.5 hr, and 4.5 hr post mixing. 6 uL of the combined A/B solution
was transferred to an 18 mm by 18 mm glass coverslip for
fluorescence imaging. The samples were imaged on an inverted
microscope (Olympus IX71) using a 60x/1.45 NA oil immersion
objective using an Olympus cy3 filter cube set (Z532BP). Images
were captured on a cooled CCD camera (iXon3, Andor).

Nanotube Image Processing. Fluorescence microscopy
images of nanotubes were processed in an automated fashion
using the scikit-image® library available for Python. First, edge
detection was performed using the Canny algorithm.*” Small
gaps in the detected edges were closed by applying a dilation
(to join adjacent edges) followed by an erosion (to restore a
single pixel-width edge). Closed tubes were then filled using
mathematical morphology. Finally, artifacts were removed by
applying a filter to remove detected objects below a threshold
size and eccentricity. Because we expect nanotubes to be of a
consistent width, nanotube length (in pixels) was calculated by
dividing the total number of pixels in a tube by the mean width
of the tubes in a given image. The length in pixels was then
multiplied by .17 um/pixel to calculate the final length in
microns. This process was used to independently detect
nanotubes present in the cy3 channel and the atto647 channel
for each image. Nanotube ends were then detected by using
skeletonization®® to reduce each tube to a 1 pixel wide
representation and then searching the image for pixels with
only a single neighbour. These pixels were assumed to be the
tube endpoints. A nanotube was then defined as “joined” if one
of its endpoints was within a cutoff distance of another
nanotube endpoint present in the alternative channel (i.e. a cy3
nanotube endpoint in proximity to an atto647 nanotube
endpoint). A Python script to perform the described nanotube
image processing is available upon request.

Kinetic Model of Nanotube Joining

We model the evolution of length distributions in a DNA
nanotube population where two distinct subpopulations, grown
from different types of DNA origami seeds, join to form hybrid
nanotubes. The goal of the model is to obtain an estimate for
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the joining rate of the subpopulations. We follow the approach

of Mardanlou et al., in which a deterministic, course-grained
View Article Online

model is derived to take into accountmq@%@ml@@@@gg
polymerization, depolymerisation, and length-dependent

nanotube joining.49 To focus our analysis on nanotube joining,
we designed our experiments so that the expected rates of tile
nucleation and the net rate of polymerization and
depolymerization are negligible, so that nucleation,
polymerization and depolymerization processes can be ignored
under the conditions of our experiment (see Results for
experimental validation of this assumption). Fragmentation of
nanotubes like those considered here proceeds at a negligible
rate (Mardanlou et al”® and Fygenson et al.31), and thus is not
included in the model.

The model captures temporal changes in the length
distribution of the population of DNA nanotubes by tracking the
concentrations of nanotubes of different lengths. The
continuous length distribution is binned, and the evolution of
the population of nanotubes in each length bin is modelled
using ordinary differential equations derived from equivalent
reactions.

Two nanotube “species” are present in our samples: A-type
and B-type, which are designed to join. A joined A-B nanotube
is classified as species C. Thus, we assume

A+ B ﬁ C,
where B is their joining rate.

Within our model, the population of each nanotube species
is segmented by length: to obtain a computationally tractable
model we choose a bin width of 1 um, and we indicate the
concentration of A-species nanotubes having length between 0
and 1 um as [Al], those having length between 1 and 2 um as
[A2], and so on, with [An] indicating the concentration of
nanotubes having length between (n-1) and n um. A consistent
notation choice is made for segments of the population of B
nanotubes.

We then model all the possible combinations of interactions
of nanotubes A and B in different length bins:

B11
Al1+B1 —(C1,1
B12
Al+ B2 —(C1,2
B13
A1+ B3 — (C1,3 ..
Ai + Bj B—U> Ci,j
where Ci,j indicates C-type nanotubes that result from
joining of A and B nanotubes that are respectively in the i um
and j um length bin. These macroscopic chemical reactions are
converted to ordinary differential equations (ODEs) using the
law of mass action. Because we neglect nucleation and
polymerization as well as fragmentation, the only terms present
in the ODEs modelling the concentration of A and B nanotubes
in each bin are those resulting from the joining reactions:

d[Ai
= —1an Y. g 18))
J

d[Bi
G =By gy [4]
J




Published on 11 December 2019. Downloaded by Johns Hopkins University on 12/11/2019 6:35:34 PM.

Molecular Systems Design & Engineering

where i=1,...,imex And j=1,...,.jmex We decided on values of ipex
and jnq of 10 based on the observed lengths of A and B type
nanotubes. Although nanotubes longer than 10 um were
occasionally observed, they do not contribute significantly to
the distribution of tube lengths and thus were not
characterized. C type nanotubes are modelled by ODEs:

afcijl _ ..o
—ar -~ PUlBillA4]]

The maximum length considered for a C type nanotube was
20um (twice the maximum length of the A and B components).
Given our choice of bin width, and the chosen threshold of
maximum nanotube length, the model is composed of
20x20 = 400 independent ODEs.

In this study, we tested three possible expressions for
nanotube joining rates: the length-dependent rate proposed by
Hill et al. (Equation 1), the length-dependent rate proposed by
Hariadi et al. (Equation 2) and a length-independent constant
rate. Each joining rate expression contains exactly one
adjustable parameter, which we fit to experimental data using
brute force sampling. We assume that at t=0 only A and B type
tubes are present and C type tubes have not yet formed. The
concentrations of A and B type tubes at t=0 is derived from the
experimental data by imaging the populations and counting the
number of tubes of each population when they are mixed
together. We assume that the actual density of nanotubes is
double this count (half the nanotubes land on the imaging
surface and other half of the non-imaging surface) (Mardanlou
etal. in preparation, Agrawal et al.45). The final concentration of
tubes in solution is the number of nanotubes divided by the
volume of the sample observed microscopically and Avogadro’s
constant. We compare simulation results with experimental
results at times t = .5, 2.5, and 4.5 hrs.

Figure 3. Fluorescence microscopy images of DNA nanotubes after end-to-end
joining reactions lasting different periods of time. Red tubes are type-A (labelled
with atto647), Green tubes are type-B (labelled with cy3). Purple dots are type A
seeds (labelled with 50% atto647 and 50% atto488). Blue dots are type B seeds
(labellwed with atto488). (A) .5 hrs post mixing (scale bar: 10um). (B) 4.5 hrs post
mixing (scale bar: 10um). (C) Zoomed in view of A (scale bar 2.5 pm). (D) Zoomed in
view of B (scale bar 2.5um).
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Figure 4. Mean lengths of seeded B-type nanotubes incubated in the absence of
the A-type species (so that no end-to-end joining could occur). Error bars
represent the standard error of the mean, calculated using bootstrapping with
1000 replicates.

Results

We collected 25 images at three time points (.5 hrs, 2.5 hrs,
4.5 hrs). For each image, we collected data from both the cy3
channel and the atto647 channel to obtain information about
both the A and B nanotube species. Representative images of
joined and unjoined nanotubes are shown in Figure 3. Using
automated image processing (see Methods section), we
measured the lengths of roughly 2000 nanotubes at each time
point and assigned each tube a “joined” or “unjoined” status.
When a joined A tube is identified by our algorithm, the B tube
that it is joined with is also recorded and the lengths of the A
and B components are summed to give the total length of the
corresponding C type nanotube. Thus, for each time point we
measured the length distributions of five species: unjoined A
tubes, unjoined B tubes, joined A tubes, joined B tubes, and C
tubes. We binned the lengths of each species using a 1 um bin
width and assuming a maximum tube length of 20 um. Binned
experimental length distributions for joined A tubes and C tubes
are shown in Figures 6 and 7.

In isolation, nanotube length does not change over the
incubation period where joining was studied. We first tested
whether nanotube dynamics within the time regime covered by
our study are controlled purely by end-to-end joining or
whether changes in length also resulted from nucleation,
growth or melting. To characterize how much growth and
melting would be expected to occur in the absence of the
potential for joining, we measured how the lengths of seeded
B-type nanotubes, which cannot join with themselves, changed

Page 6 of 13
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Figure 5. Length distributions of B-type majority species nanotubes at each time point.
Error bars represent the standard error of the mean, calculated using bootstrapping with
1000 replicates.

over time. Seeded B-type nanotubes were prepared as
described in Methods; however, instead of combining the A-
type and B-type nanotubes in a 1:5 ratio after 15 hours, the B-
type nanotubes were imaged separately. B-type nanotube
lengths were then measured at .5 hrs, 2.5 hrs, and 4.5 hrs
(Figure 4). As shown in Figure 4, the mean lengths of B-type
nanotubes did not change significantly over the incubation
period where joining was studied, suggesting that the net rate
of nanotube growth and melting was no more than ~.1um/hr.
Note that only seeded nanotubes were considered here. We
conclude that growth (or melting) processes do not contribute
significantly to nanotube dynamics under the conditions of our
study and may safely be disregarded in our models of end-to-
end joining.

The length distribution of the unjoined excess nanotube
species does not change over time as a result of end-to-end
joining. Our goal in combining the A and B species in a 1:5 ratio
was to ensure that the length distribution of the excess species
(species B) was not affected by end-to-end joining with the
minority species (species A). To test whether this goal was
achieved we measured the length distributions of the unjoined
species B (excess) at each time point (Figure 5). As shown in
Figure 5, any changes in the unjoined excess nanotube length
distributions over time are within experimental error
established by bootstrapping. This indicates that end-to-end
joining does not significantly affect the length distribution of the
B nanotubes over time. Given that length distribution and
concentration of species B nanotubes do not change over time,
we expect the joining rate for a given A nanotube should be
roughly constant over time, which simplified the interpretation
of our results. That is, the length dependence of joining can be
observed by observing changes in the length distribution of A
nanotubes in the presence of B nanotubes.

Generating simulated length distributions for the three
models using a given rate parameter. To determine whether a
model accurately captured the joining rates for a range of
nanotube lengths, we simulated the joining process using each
model and compared the results of the simulation at different
times to our experimental measurements. To facilitate this
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comparison, experimentally measured lengths were binned in
an identical fashion to the simulated lengths (using the fit to
rate parameters as described below) s%gj]a{co_t@gé"e&%g%%g
may be overlaid (Figures 6,7). Using the fact that nanotubes
did not appear to grow or shrink over time, the length
distributions of unjoined A-type and B-type nanotubes at time
0 hrs (initial conditions) were generated by assigning the A-type
and B-type nanotubes from the first time point (.5 hrs) an
unjoined status.

Designing the cost function. To assess the accuracy of each
model we chose a cost function that requires a model to predict
both the mean joining rate and length-dependent variations in
the rate at each time point where experimental data was
collected:

Equation 3
Etol:al2 = (Ejoining_f‘ractionz) + (Ejoined_Atube_CDFz) +
(ECtube_CDFZ)

Our cost function thus simply adds the difference between
experimental and simulated values of three attributes at each
time point: (1) error in a model’s prediction of the fraction of
total A tubes that are joined (Ejning), (2) error in a model’s
prediction of the cumulative length distribution function of the
lengths of the A-tube component of C-type nanotubes
(Ejoined_atube_coF), (3) error in a model's prediction of the
cumulative length distribution function for C-type nanotubes
(Ectube_coF)-  Both the cumulative distribution function (CDF) of
the lengths of the A type domains within the C tubes and the C
tube CDF contain information on the length dependence of end-
to-end joining. The CDF of A tube domains within C tubes
effectively measures the likelihood that an A tube of a particular
length is not joined to a B tube of any length. Meanwhile, the C
tube CDF measures the likelihood of two tubes of a particular
total length (A length + B length = C length) joining and
therefore provides additional information on length-
dependence. In our study, each error term is given equal
weighting; as we will later demonstrate, differently weighting
these terms would not effect our conclusions. Our error
function measures differences in fractions of nanotube
populations at each bin and is therefore dimensionless.

Optimal parameters for each model. Each model of the end-to-
end joining rate has one fitted parameter. In the constant
model, the fitted parameter is simply the bimolecular rate
constant B (in /M/s). In the Hill and Hariadi models the fitted
parameters are the prefactors Ay (/M/s) and
Ayariadi (/M/s), respectively, (see equations 1 and 2) that
precede the particular (dimensionless) length-dependent term
in the joining rate equations. The lengths used in both the Hill
and Hariadi models are made dimensionless by dividing by the
nanotube diameter (approximated as .015 um for seeded
nanotubes).29 We used a brute force parameter scan to identify
optimal values, and the associated cost function errors, for each
fitted parameter in each model. In all three cases, the optimal
parameter value represents a distinct minimum in the cost
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Figure 6. Experimental (blue) and simulated (red) length distributions for joined A-type nanotubes.

function. The optimal parameter values and the corresponding
cost function errors found for each model are shown in Table 1.

The optimal parameter values identified by all three
models are consistent with prior measurements. For the
constant model, the ~4e6 /M/s rate constant that was fit to the
data is consistent with prior measurements of the reaction rate
for nanotube tile attachment,” nanotube joining rates made
with assumption that the joining rate is length independent,32
and the hybridization rates of DNA origami51. In both the Hill
and Hariadi models, the optimal prefactor must be multiplied
by an appropriate (dimensionless) length-dependent term to
yield a joining rate in /M/s for nanotube reactants of particular
lengths. The distribution of lengths of unjoined nanotubes
measured in our experiments are centered around 5 um, so, to
compare the fits for the Hill and Hariadi models to previous rate
measurements, we consider the joining of two 5 um nanotubes.
Using the Hill model with the optimal prefactor yields a joining
rate of ~2e6 /M/s and using the Hariadi model with the optimal
prefactor yields a joining rate of ~3e6 /M/s. Confidence

intervals on the optimal parameter values were computed using
bootstrapping, with 1000 replicates each, randomly selecting
50% of the experimental data and then performing a brute force
scan to identify an optimal parameter based on a random
subset of the data. These results suggest that using our data,
we can estimate the rate constants within a factor of 2-3.

All three models show agreement with experimental data,
with the constant and Hariadi models marginally
outperforming Hill. Using the optimal parameters calculated
for each joining model, we generated simulated nanotube
length distributions for the A domains of joined nanotubes,
unjoined A nanotubes, and C nanotubes at each experimentally
measured time point. The normalized simulation distributions
predicted by each model are compared with normalized
experimentally measured length distributions in Figures 6 and
7. In general, both the Hariadi and constant joining models
overlap well with the experimental data, with the Hill joining
model showing weaker agreement, particularly when
comparing the C tube length distributions and comparing data

Page 8 of 13
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at the earliest time point. This observation is also in agreement
with the tabulated cost function, or error, values in Table 1,
which indicate that the constant model has the lowest error,
followed by Hariadi and then Hill. (Note that error values are
dimensionless). Additionally, the data in Table 1 shows that the
difference in error between the constant and Hill models is
nearly three times as large as the difference in error between
the constant and Hariadi models.

The constant joining rate and Hariadi models outperform
Hill with statistical significance. To evaluate the statistical
significance of our cost function ranking (constant < Hariadi <
Hill) we computed confidence intervals on the cost function
error. Confidence intervals on the cost function error associated
with the optimal parameter value were computed using the
same bootstrapping procedure used for the optimal parameter
confidence intervals; however, for each replicate the error was
calculated using the optimal parameter identified using the full
data set. Optimal parameter values and associated errors, as
well as 90% confidence intervals for both parameter values and
associated errors are shown in Table 1. As seen in Table 1, the
90% confidence interval on the constant model error overlaps
with interval for Hariadi. Likewise, the confidence interval for
the Hariadi model overlaps with the Hill model. This is

supported by the fact that a visual distinction between the
constant and Hariadi models in Figures 6 and 7 is more difficult
to make than a distinction between the constant and Hill
models. Using our bootstrapping results for the cost function
error we calculate that the probability of observing a rank order
of constant model < Hariadi model is ~92.4%, a rank order of
constant model < Hill model is ~99.9%, and a rank order of
Hariadi model < Hill model is ~¥98.3%. The constant and Hariadi
models outperform Hill; however, a distinction between the
constant and Hariadi models is more difficult to make.

Joining rates predicted by fits to the Hill and Hariadi joining
models differ just 3-10 fold over the range of tube lengths in
our experiments. When considering joining between two 5 um
nanotubes, the rates predicted by both the Hill and Hariadi
models are similar. However, the length-dependent scaling of
each model differs over the range of lengths considered in our
experiments. For example, let us compare the difference in
predicted joining rates for a 5 um tube joining with a 1 um tube
(faster) vs a 5 um tube joining with a 10 um tube (slower) using
both the Hill and Hariadi models. In the Hill model, the rate of
joining with the 10 um tube is approximately seven times slower
than the rate of joining with the 1 um tube. However, in the
Hariadi model, joining with the 10 um tube is only three times



Published on 11 December 2019. Downloaded by Johns Hopkins University on 12/11/2019 6:35:34 PM.

Molecular Systems Design & Engineering

slower than joining with the 1 um tube. The computed rate
constants for these “long tube” and “short tube” joining
reactions using both models are shown in Table 1. While the
range of joining rates (3 — 10 fold) is not dramatic, we do expect,
given our distribution of tube lengths, that there should be a
detectable difference in the joining rate in our experiments.
However, no such length-dependence is detected, suggesting
that the constant rate joining model is the most accurate.

The relative ranking of the models is not influenced by the
way nanotube lengths were binned. Our cost function
measures differences between the fraction of nanotubes in a
particular range of lengths, a bin, at particular times measured
in experiments and predicted by a particular model. To ensure
that our ranking of the three end-to-end joining models is
robust to how the lengths were binned, we repeated our fitting
protocol using bin widths of .9 um and 1.1 um (still capping the
maximum tube length at 20 um). The relative ranking of the
three end-to-end joining models, as well as the size of the
confidence intervals, was unaffected by the new bin widths.

The relative ranking of the models is not influenced by the
form of the cost function. Our cost function compares a linear
combination of the error between experimental and simulated
values of: (1) the fraction of joined nanotubes, (2) the
cumulative length distribution function of the A-type domains
of joined nanotubes, and (3) the cumulative length distribution
function for C-type nanotubes. In our cost function, these errors
were summed without being weighted. To ensure that our
predictions are not strongly dependent on how each term of the
cost function was weighted, we repeated our fitting protocol
with three different cost functions: a cost function with only the
joining fraction term active, a cost function with only the joined
A-type cumulative distribution term active, and a cost function
with only the C-type cumulative distribution term active. Plots
of the fitted parameter vs. the error for each of the three joining
models (constant, Hill, and Hariadi) using each of the three cost
functions are shown in Figure 8. The optimal parameters
achieved using each of these cost functions are within a factor
of two of the optimal parameters achieved using the cost
function in Equation 3 (Figure 8, leftmost column), except that
for the constant joining rate model, the cumulative distribution
function cost functions give a constant error for all possible
reaction rates as expected.

Further, each optimum lies in a deep local minimum for the
error: that is, the error increases nonlinearly as the parameter
is increased or decreased from the optimum value. For the
joining fraction cost function in particular, one can see why this
scaling of the error is similar for all three models. For both
models where joining rates are length-dependent, shorter
tubes join faster and longer tubes join slower; averaging the
joining rate over the symmetric distribution of tube lengths in
our experiments cancel out these effects to produce a net
joining fraction similar to a mean joining rate that is
independent of nanotube length.

The reason the models do not all fit the data equally well is
because some models predict the shapes of the cumulative
length distributions of the A-type domains of the C nanotubes
and C-type nanotubes at different times more poorly than

others do (Figure 8, center and rightmost columns). In the
constant model, the error terms in the cost function
corresponding to these length dig@bm@gé‘% d&%%gfgé
dependence on the joining rate constant (Figure 8, top center
and top right plots) because all nanotubes join at the same rate.
Thus, the shapes of the normalized cumulative length
distribution functions cannot change for any joining rate. For
the Hariadi and Hill models, there is significant dependence of
the error on both the joined A-type and C-type cumulative
length distribution terms (Figure 8, four plots in lower right
corner). There are two significant features in these plots: (1)
the global trend of error decreasing with increasing parameter
value, and (2) the existence of a local minimum at intermediate
parameter values. The global trend can be rationalized for the
cumulative distribution of the lengths of the of joined
nanotubes by considering what should happen to the error
when the joining rate prefactor is very large. Here, end-to-end
joining occurs so quickly that, regardless of nanotube length, by
the first time point almost 100% of nanotubes should be joined.
In this case, the distribution of the lengths of A-type joined
tubes should be exactly the same as the initial distribution of A-
type unjoined tubes, giving roughly the same error for this term
as for the constant joining rate model for a sufficiently large
rate. By contrast, at very low joining rates, only the shortest
nanotubes should join with any frequency, leading to length
distributions of joined A-type nanotubes containing only short
nanotubes. Since very little dependence on length was
observed, the predicted distribution would be very different
than the observed one, leading to a large error. The error in
predicting the length of A-domains of the C-type nanotubes
should follow the same trends, so that this general trend of
decreasing error would also be seen for this component of the
cost function. Thus, the trend toward lower error at higher
parameter values implies that the constant model is the most
appropriate given the experimental data. The local minima in
these plots represent intermediate parameter ranges where
optimal fits can be found; however, they do not represent the
true global minimum error for the model.
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model).

For all three models a similar error is achieved using only the
joining fraction as the cost function. Moving away from this
minimum error, the error rises nonlinearly with deviations in
parameter (Figure 8, leftmost column). Using the constant
model, neither of the cumulative distribution terms have any
dependence on parameter value (they merely add a constant
error). Thus, the optimal parameter for the constant model is
determined purely by the joining fraction term. In contrast, for
the cumulative distribution terms in both the Hill and Hariadi
models, the global trend toward lower error with higher
parameter values is linear and is cancelled out by the nonlinear
increase in error from the joining fraction term. This
cancellation of a term that scales linearly by a term that scales
nonlinearly is independent of the particular weights on each
term in the linear combination and restricts the available
parameter space available to the Hill and Hariadi models. That
is, for a given cost function, fitting the Hill and Hariadi model
leads to a trade-off. Fitting the right overall joining fraction

leads to a too-large shift in the cumulative distribution functions
with time, while fitting the cumulative distribution functions
over time leads to a too-small average joining rate. This
compromise again supports the length-independent joining
rate for use in understanding DNA nanotube joining as both the
simplest model and the model that best explains our
observations.

Conclusions

In this study, we experimentally characterized the length-
dependence of the end-to-end joining rate of DNA nanotubes
by measuring the lengths of nanotubes before and after joining
at different times during the joining process. We then tested the
ability of three different models for the end-to-end joining rate
(constant rate, Hill, and Hariadi) to reproduce the experimental
length data using an ODE model of nanotube joining. All three
joining models predict physically realistic average joining rates
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cost .90 Cl cost predicted kjoin predicted kjoin
model fitted parameter (/M/s) .90 Cl parameter (/M/s) function function for long tubes (/M/s) for short tubes (/M/s)
constant 3.86E+06 3.78E+06 - 3.91E+06 0.521 0.322-0.962 3.86E+06 3.86f%0@ ticle Online
Hariadi 7.18E+07 6.66E+07 - 7.76E+07 0.974 0.618 - 1.61 1.95E+06 bol lO.&%_{UQé\/\EOOOGSB
Hill 2.98E+10 2.31E+10 - 3.76E+10 1.92 1.31-2.87 8.09E+05 5.98E+06

Table 1. Compiled data on parameter fits and corresponding error. Confidence intervals were generated using bootstrapping with 1000 replicates. “Min”
joining rates are calculated for a 5 um tube joining to a 10 um tube, “max” joining rates are calculated for a 5 um tube joining toa 1 um tube.

. . . 29,51, 52
that are consistent with prior measurements. We ranked

each of the three joining models using a cost function that
compares both mean joining rate and length-dependence of
joining rate between each model and experiment. Using this
cost function, the constant model is ranked the most accurate,
followed by the Hariadi model and lastly the Hill model.
Confidence intervals on the cost function error and the ranking
probabilities (a rank order of constant < Hariadi is ~92.4%,
constant < Hill is ¥99.9%, and Hariadi < Hill is ~98.3%) suggest
that the constant and Hariadi models significantly outperform
Hill; however, a distinction between the constant and Hariadi
models is less certain. Overall, all three joining models provide
an acceptable fit to the experimental data when simulated and
experimental histograms are overlaid.

One possible reason the differences between the models
were so small is that the differences in the joining rates
between nanotubes of the lengths we studied is not expected
to be that large for the Hariadi and Hill models. We measured
joining rates for nanotubes with lengths centered around 5 um
and vary between 1 and 10 um (Figures 6 and 7). As shown in
Table 1, the expected variation in joining rate over this range is
approximately three-fold for the Hariadi model and seven-fold
for the Hill model. These variations in joining rate are significant
and produce a higher error in the Hariadi and Hill models
relative to the constant rate model, particularly so for the Hill
model. However, in a study that included nanotubes with a
wider range of lengths, the Hill and Hariadi models would
predict a larger range of joining rates. In such a study, the
differences between the three joining rate models would be
exacerbated and more easily detected by our analysis.

DNA nanotubes provide an ideal model system for the
measurement of polymer end-to-end joining rates. However, it
is unclear how well our results translate to joining processes
that do not occur because of Watson-Crick hybridization. The
length-independent joining that we observe in this study
disagrees with prior results on microtubules,36'39 amyloid
fibrils,‘m'42 and actin filaments,43' * all of which obey the length-
dependent model prescribed by Hill. Our length-independent
joining rates suggest that translational and rotational diffusion
of DNA nanotubes is not the rate-limiting step in end-to-end
joining.

The question of length-dependent nanotube joining is a
special case of a more general question: How does the size of a
DNA nanostructure determine how fast it hybridizes with
others? It appears there is no systematic answer to this
question and that the answer may depend on the length scale
involved. Forinstance, Zenk et al.®* observed that dimerization
scaffolded DNA origami
nanostructures are of the same order of magnitude as rate
constants for bimolecular association of small, complementary

rate constants for 60 nm

DNA strands. Jiang et al.>® observed that the second-order rate
constant of DAE-E DNA tile homodimer formation is two-fold
higher than the rate constant for single stranded DNA
hybridization, despite the fact than DNA tiles are bulkier than
single stranded DNA oligos. Jiang et al also found that tile
rigidity strongly affects the second-order rate constant despite
having no impact on translational or rotational diffusion. A
range of measurements of DNA hybridization from 20-bp
oligos,53' % to DNA double-crossover tiles,52 to tiles hybridizing
to larger nanostructures all predict somewhat similar rate
constants for similar salt-conditions. Our study further shows
that two micron-scale structures again join at a similar rate.
These results together suggest that DNA hybridization is not a
diffusion-limited process under these conditions.

Better understanding of what controls these rates will be
critical for the kinetic control of DNA self-assembly.  Factors
that do affect the rates of DNA nanostructure binding include
multivalency, i.e. the existence of multiple single-stranded
binding sites that can hybridize on each of the reactions and the
rigidity of the reactants,” although none of these affect rates
more than a factor of 3-5. Temperature54’ %6 57 and salt
compositionso’ %839 3150 affect rates, although the dependence
on temperature does not obey the Arrehenius rate law.>
However, one potential advantage of the similarity of DNA
nanostructure hybridization rates across such a wide range of
reactant size scales is that we can reasonably assume a single
rate of interaction between many different DNA
nanostructures. In combination with the ability to predict the
free-energy of association,® this fact should allow us to design
relatively accurate models of the kinetics of DNA self-assembly
processes without the need to measure the thermodynamics
and kinetics of association for each potential component or
intermediate.
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